Optimisation of polymeric surface pre-treatment to prevent bacterial biofilm formation for use in microfluidics.
نویسندگان
چکیده
The production of a microfluidic device for microbial culture has necessitated the development of techniques for the prevention of bacterial adhesion to a range of polymeric substrates including fluoropolymers such as fluorinated ethylene polypropylene, and polyolefins such as low-density polyethylene. Treatment of such materials to increase hydrophilicity reduces the incidence of attachment of Escherichia coli during the first 4 h of cultivation, although no decrease in the number of biofilm initiation sites was detected after 16 h. The incorporation of a mannose analogue to block binding proteins on the F1 binding fimbriae was also investigated. The possibility of ensuring suspension culture of bacterial cells in high surface area to volume ratio nano-vessels is thus facilitated by the correct choice and pre-treatment of materials used in their construction.
منابع مشابه
Evaluation of the Effect of Zinc Oxide Nanoparticles on the Inhibition of Biofilm formation of standard Pathogenic Bacteria and Comparison with Drug Resistant Isolates
Introduction: Traditional medicines cannot adequately reach the target tissues, due to their large size; therefore, the attention of researchers has been drawn to the use of nanomedicines. In fact, the use of biological active compounds loaded on the surface of nanoparticles can be effective the in the promotion of their antimicrobial activity. In the earlier studies, it was demonstrated that b...
متن کاملبیوفیلم پسودوموناس ایروژینوزا و روشهای پیشگیری و درمانهای تازه آن
Background and Objective: Microbial biofilms are responsible for 65% of human infections, and are resistance to antibiotics. Pseudomonas aeruginosa is one of the most important biofilm producing bacteria. This review tries to explain the last mechanisms of Pseudomonas aeruginosa biofilm formation, the reasons for its resistance to antimicrobial agents, as well as new preventive measures and a...
متن کاملEvaluation of Anti biofilm and Antibiotic Potentiation Activities of Silver Nanoparticles Against some Nosocomial Pathogens
Nowadays silver nanoparticles (AgNPs) are used as antimicrobial due to its well known physical, chemical, and biological properties. A large collection of bacterial cells adhering to a surface is called bacterial biofilm. Exposure to silver nano particles (AgNPs) may prevent colonization of new bacteria onto the biofilm. In the present work, we have investigated whether the biofilm format...
متن کاملImplants modified with polymeric nanofibers coating containing the antibiotic vancomycin
Objective(S): Implant-related infections are disastrous complications in the clinic. One recent strategy to reduce the rate of infection is using the bioactive coating with an antibiotic. The purpose of these bioactive surfaces is to prevent bacterial adhesion to the implant and, consequently, the development of biofilm. In this study, vancomycin-loaded polymeric coating on imp...
متن کاملBiofilm Formation in Staphylococcus Aureus and its Relation to Phenotypic and Genotypic Criteria
Abstract Background and Objective: Biofilm is a complex microbial community embedded in a self-produced extracellular polymeric matrix. We aimed to study the extent of biofilm formation by S. Areas isolates and its relation to some phenotypic and genotypic criteria. Material and Methods: One hundred-fifty strains of Staphylococcus aureus isolated from Gorgan were studied. Microtiter plate a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of molecular recognition : JMR
دوره 17 3 شماره
صفحات -
تاریخ انتشار 2004